
ar
X

iv
:0

80
6.

03
14

v1
 [

cs
.H

C
]

 2
 J

un
 2

00
8

GuiLiner: A Configurable and Extensible Graphical User Interface for
Scientific Analysis and Simulation Software

Nicholas C. Manoukis† Eric C. Anderson§

†Section of Vector Biology, Laboratory of Malaria and Vector Research
National Institute of Allergy and Infectious Diseases, National Institutes of Health

12735 Twinbrook Parkway, Bethesda, MD 20892 USA

§Fisheries Ecology Division, Southwest Fisheries Science Center
National Oceanic and Atmospheric Administration

110 Shaffer Road, Santa Cruz, CA 95060 USA

manoukisn@niaid.nih.gov Eric.Anderson@noaa.gov

Abstract

The computer programs most users interact with daily are driven by a graphical user inter-
face (GUI). However, many scientific applications are used with a command line interface (CLI)
for the ease of development and increased flexibility this mode provides. Scientific application
developers would benefit from being able to provide a GUI easily for their CLI programs, thus
retaining the advantages of both modes of interaction. GuiLiner is a generic, extensible and
flexible front-end designed to “host” a wide variety of data analysis or simulation programs.
Scientific application developers who produce a correctly formatted XML file describing their
program’s options and some of its documentation can immediately use GuiLiner to produce a
carefully implemented GUI for their analysis or simulation programs.

Key-Words : Graphical user interfaces, XML, Computer applications, Software interfaces

1 Introduction

Computer applications for scientific research gener-
ally receive user input through a command line in-
terface (CLI) or through a graphical user interface
(GUI). Each has advantages and shortcomings. For
example, GUIs provide immediate accessibility and
a familiar mode of interaction for most users. On
the other hand, the CLI allows for batch processing,
inclusion of the program in shell scripts, and the re-
tention of execution parameters. CLI programs also
require less development time and are more portable
across different computer operating systems.

In this paper we present guiLiner, an application

designed to bridge the gap between CLI and GUI
modes for computer programs used in scientific re-
search. GuiLiner is a generic, extensible and flexible
front-end designed to “host” a wide variety of data
analysis or simulation applications. It is geared pri-
marily toward the scientific application development
community, which can realize several unique benefits
from its use, beginning with the elimination of time
spent writing code to generate a GUI.

The task of creating a generic GUI for biological
scientific applications is made simpler by the fact that
most of them follow a simple interaction model: 1)
the user provides data and parameters to the appli-
cation 2) the algorithm is executed on these and 3)

1

http://arXiv.org/abs/0806.0314v1

Figure 1: Schematic diagram showing how GuiLiner, the

hosted analysis application and the XML confiuration file are

used together to present a single GUI-driven application to the

user.

the results of the analysis are returned. Each of these
steps is generally atomic.

Since step 1) can involve many options, it is here
that CLI based applications can become cumbersome
to use or may be intimidating to inexperienced users.
GuiLiner focuses on this step and on step 2). With-
out modifying the original CLI program, guiLiner
provides a way for users to quickly see the avail-
able program options, read documentation and set
the value of each option, and then execute the pro-
gram, all from within a familiar “point-and-click” en-
vironment.

2 Implementation

GuiLiner is written in the Java programing language,
and virtual machines capable of executing it are
available for current versions of Microsoft Windows,
Mac OS X and many types of UNIX based operating
systems such as GNU/Linux (for a full list, please
see
http://www.java.com:80/en/download/manual.jsp).
GuiLiner operates by parsing an XML configuration
file which contains information on the CLI-based
application being hosted, its options, documentation
and some details about how guiLiner itself should
display this information (Figure 1). This scheme
allows almost unlimited extensibility, so that the
feature-set of guiLiner can be increased with later
releases.

The GUI provided by guiLiner features a rapid vi-

Figure 2: GuiLiner hosting a sample program, in Editing

mode.

sual summary of which options are required, set, or
unset in a color-coded option tree; integrated display
of documentation specific to each program option; fa-
cilities for saving the values of options used for a par-
ticular execution of the hosted application; and the
ability to view and save to disk program run-time
output and/or errors.

In addition to the rapid display of selected and re-
quired options, efficient option information retrieval
and runtime results, guiLiner’s layout is designed to
put commonly used functions within easy each. Be-
sides the usual menu bar (Figure 2 #1) containing
a custom help browser and XML save-open options
among other settings, there is also a button bar for
functions commonly used during option setting (Fig-
ure 2 #2). These include functions to preview the
command line, rest all options, manipulate the op-
tion tree and run the hosted program. Use of these
is described in more detail in the next section.

We have found few other efforts to create a generic
user interface. Some of these are not focused on the
scientific computing community, and so aim to ac-
commodate a wider variety of CLI programs. These
usually take the form of widget sets that can be con-
figured to create a GUI. While this approach is more

2

http://www.java.com:80/en/download/manual.jsp

flexible it is usually also more time consuming and
less extensible. Other generic GUI programs use a
“Wizard” interface, which is both flexible and easy
to deploy, but lack the visual summary and interac-
tivity that guiLiner offers. The advantage of guiLiner
over either of these approaches is that it is designed
to represent a single mode of interaction that is com-
mon in scientific computing, which allows it to be
employed very quickly and at the same time makes it
very effective for hosting these types of programs. To
date we have not found any other applications which
fill this exact niche.

3 Usage Overview

Most user interaction with guiLiner involves selecting
options from the option tree (Figure 2 #4) by clicking
on them. When selected, an interface to manipulate
that option is displayed in the options pane (Figure
2 #3). The exact interface will vary depending on
which type of option is being displayed: it may have
a text box where a value can be input, a set of buttons
that allows the user to set the option to one of several
given values, or a dialog box for navigating the file
directory to find an input file, etc. In all cases the
user is able to get more information on the option by
clicking the “Information” tab in the option pane.

The colors in the option tree give a quick visual
guide to the run settings. Red = option is required,
value not yet specified; Black = option not required,
value not yet specified; Blue = a value for the op-
tion has been specified and will be used for program
execution.

Clicking the Preview button (Figure. 2 #2) causes
the command line to be assembled from the values
currently specified by the user and prints it to the
console panel (Figure. 2 #5). This is particularly
useful for “transitional” users who are gaining famil-
iarity with the command line environment, but are
not yet fully comfortable with it. Using this facility
then saving the console contents is an easy way to
save run settings. An alternative method it to save
the entire XML file with the selected options already
set. Though this is more cumbersome to read, it does
allow guiLiner to automatically load the settings used
in that particular execution.

When the RUN PROGRAM button (Figure. 2
#2) is clicked, guiLiner uses a system call to exe-
cute the CLI program with the options assembled by
the user in guiLiner. Program output to stdout goes
to the console panel from where it may be viewed or
saved to disk as a text file. Program output to stderr
is directed to the Errors panel and the user is noti-
fied of errors in the status bar (Figure. 2 #6). Any
program output directed to files goes to those files
specified either by an absolute path or by a path rel-
ative to the current working directory (exactly as if
the program were run from the CLI). guiLiner is not
designed for interactive display of program output,
though future versions could allow simple GUI-driven
output display using developer provided scripts and,
for example, the R statistical computing environment
[1].

For ease of distribution and installation to end-
user machines guiLiner, the XML configuration file
and the CLI executable can be distributed as an
installer. There are several excellent installer plat-
forms available which could streamline this process,
such as the platform independent IzPack (available
at http://izpack.org/).

Details on the XML file specification, op-
tion types, the application executable and source
code, and discussion forums are available at
http://guiliner.sourceforge.net. Also at this web site
there are sample XML configuration files for a vari-
ety of bioinformatic and population genetic analysis
programs including Exonerate [2], IM [3], Makesam-
ples [4] and Spip [5]. A Document Type Definition
(DTD) file is distributed with guiLiner to automate
XML configuration file generation and to allow error
checking.

We also distribute there a small C library for C
or C++ programmers that simplifies command-line
parsing and error checking, and allows the documen-
tation for each option to be written and stored in the
source code. This documentation may be printed by
the program in short-help format, long-help format,
UNIX man page format, and guiLiner XML format.
The guiLiner XML format can be read directly by
guiLiner so that any updates to the program can be
immediately translated to the guiLiner GUI.

We encourage contributions to the source code or

3

http://izpack.org/
http://guiliner.sourceforge.net

comments on guiLiner.

4 Conclusions

GuiLiner is an effective “wrapper” for a wide variety
of biological analysis and simulation software. Ap-
plication developers will be able to offer a functional
and carefully implemented GUI to their CLI-driven
software with little effort. At the same time, guiLiner
should make a wider variety of applications immedi-
ately available for the analyses of researchers who are
not familiar with the CLI or are beginning to learn
about it.

5 Acknowledgements

This research was supported in part by the Intra-
mural Research Program of the NIH, NIAID. The
authors would like to thank J. Hey, R. Hudson and
J Garza for graciously permitting us to present their
programs bundled with guiLiner to serve as exam-
ples.

References

[1] R Development Core Team, R: A Language and

Environment for Statistical Computing, R Foun-
dation for Statistical Computing, Vienna, Aus-
tria, 2007, ISBN 3-900051-07-0.

[2] G. S. C. Slater and E. Birney, “Automated gener-
ation of heuristics for biological sequence compar-
ison.” BMC Bioinformatics, vol. 6, p. 31, 2005.

[3] J. Hey and R. Nielsen, “Multilocus methods for
estimating population sizes, migration rates and
divergence time, with applications to the diver-
gence of Drosophila pseudoobscura and D. per-

similis.” Genetics, vol. 167, no. 2, pp. 747–760,
Jun 2004.

[4] R. R. Hudson, “Generating samples under a
wright-fisher neutral model of genetic variation.”
Bioinformatics, vol. 18, no. 2, pp. 337–338, Feb
2002.

[5] E. Anderson and K. Dunham, “spip 1.0: a pro-
gram for simulating pedigrees and genetic data

in age-structured populations,” Molecular Ecol-

ogy Notes, vol. 5, no. 2, pp. 459–461, 2005.

4

	Introduction
	Implementation
	Usage Overview
	Conclusions
	Acknowledgements

